

PFAS Today

Part 2: How are we treating it in water discharges?

Speaker

TJ Mothersbaugh

Business Development Manager WaterTectonics tj@watertectonics.com

Outline

- WaterTectonics
- Treatment Solutions
- PFAS in California
- PFAS Chemistry
- Sampling/Analysis Challenges
- PFAS Treatment Options
- Units Primer
- California PFAS Case Study
- PFAS Destruction
- Current PFAS Research Areas
- New (?) CECs

WT Overview

- Since 1999, WaterTectonics has designed, manufactured, and installed industrial water treatment systems for clients in a wide range of markets
- We provide a range of simple-to-advanced solutions that can be customized to meet site-specific customer conditions and water quality goals
- Our in-house design and lab services can help with technology selection and treatability testing to validate the approach for a facility
- Our field team provides year-round field service support to ensure long-term project success

EHSSUMMIT

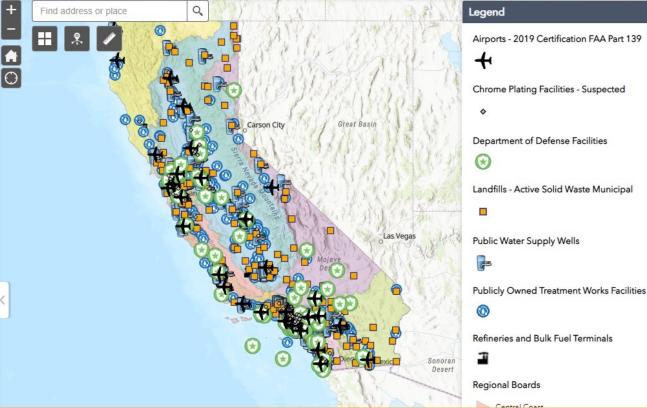
Treatment Solutions

Pre-Treatment

- Electrocoagulation
- Chemical Treatment
- Dissolved Air/Gas Flotation
- Incline Plate / Circular Clarifiers
- pH Adjustment
- Media Filtration

PFAS Treatment

- Granular Activated Carbon
- Ion Exchange
- RO Membrane Treatment
- Ozofractionation



WATER BOARDS California PFAS Investigations

PFAS Information

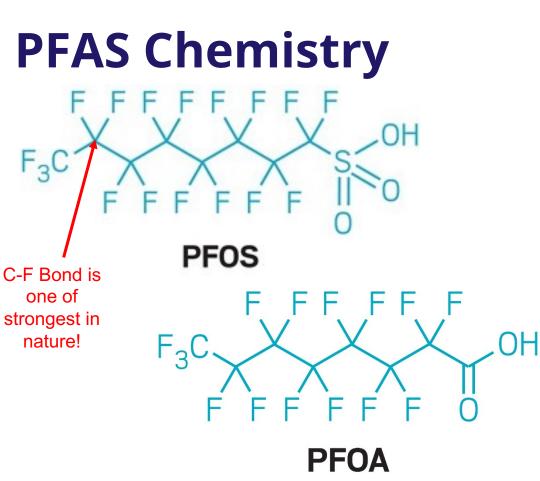
This map is a tool for public use. The map shows locations of airports, landfills, suspected chrome plating facilities, publicly owned treatment works (aka wastewater treatment plants), bulk fuel terminals, refineries, and military facilities that have potential sources of per - and polyfluoroalkyl substances (PFAS). From 2019 to 2021, the California State Water Board issued California Water Code (CWC) Section 13267 and/or 13383 Investigative Orders to these sites across the State of California. This does not mean that PFAS has been produced, used or discharged at these sites. Orders were also issued to the public water systems to sample wells (shown in the general location on this map) in the vicinity of the airports, landfills, and previous PFAS detections.

Military facilities have been identified by the Department

https://www.waterboards.ca.gov/pfas/

https://gispublic.waterboards.ca.gov/portal/apps/webappviewer/ index.html?id=4feba1766c224dc99eadea06ef3bd019

San Diego Region PFAS Cases


	Search:
Case Name	ID Number
DOD Program**********************************	
CAMP PENDLETON BASE WIDE PFAS	T10000017516
FallBrook Naval Weapons Station PFAS	T10000017517
MCAS Miramar PFAS	T10000017518
Naval Base Point Loma, NTC, Nise-West, SW - PFAS	T10000017519
Naval Base Coronado - PFAS	T10000017520
Naval Base San Diego - PFAS	T10000017521
Imperial Beach NALF - PFAS	T10000017522
Coronado Amphibious Base - PFAS	T10000017523
PFAS Investigations Warner Springs SERE Camp	T10000020068
Site Cleanup Program**********************************	
San Diego International Airport	T10000012787
McClellan-Palomar Airport	T10000012786
West Coast Plating	T10000013642
Sanchez Polishing and Plating	T10000013639
Equality Plating Co.	T10000013632
Mission Valley Terminal	SL607392800

Showing 1 to 18 of 21 entries

https://cawaterdatadive.shinyapps.io/R9_PFAS/?

PFBA
PFPeA
PFHxA
PFHpA
PFOA
PFNA
PFDoA
PFTeA
PFBS
PFHxS
PFHpS
PFOS
4:2 FTS
6:2 FTS
8:2 FTS
GenX

Sampling/Analysis Challenges

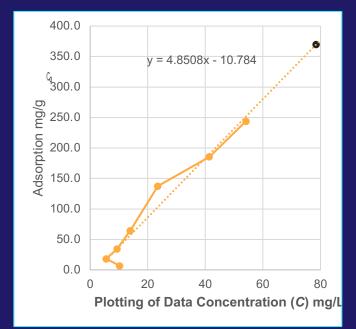
NOT RECOMMENDED	RECOMMENDED
Teflon, LDPE, Polypropylene	HDPE, Silicon
Waterproof field books, plastic clipboards, binders, spiral hard cover notebooks, sticky notes, glue	Loose paper with aluminum clipboard
Markers	Pens
Chemical ice packs	Bags of ice
Water resistant, waterproof, or stain-treated clothing, including GoreTex and Tyvek	Cotton clothing laundered a minimum of 6 times from time of purchase
cutive	

PFAS Treatment Overview

- Treatments are widely available but case specific and often require multi-stage processes with robust pre-treatment to effectively remove to part per trillion levels
- Pre-treatment can often be needed to address total suspended solids, oil & grease, heavy metals, total organic carbon, and bacteria
- Treatment selection will depend on influent PFAS levels, effluent targets, other contaminants present, total volume requiring treatment, and final waste disposal options

PFAS Treatment Options

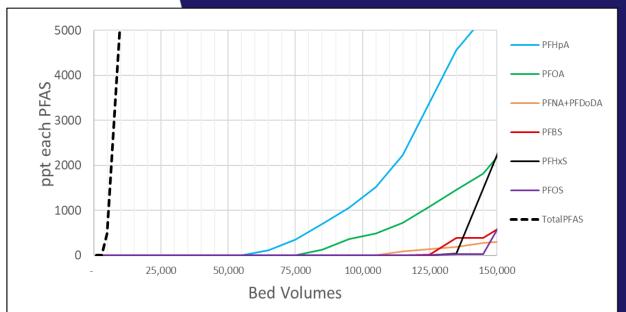
Treatment	Pre-Treatment Needs	Removal	Waste	Modeling
GAC	Moderate	Tail adsorption	Incinerate or off-site regen	Need to bench test
IX	High	Tail & head adsorption	Incinerate or on-site regen (specialty)	Can do via software
RO	High	Size exclusion of PFOA (414) and PFOS (500)	20-30% liquid reject stream	Can do via software
Ozofractionation	Low	Micro nano-bubble phase	Concentrated aqueous stream	Need to pilot


∧ mapistry

GAC Modeling

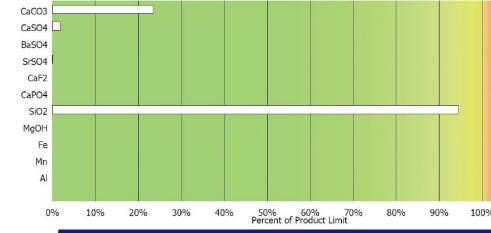
EHSSUMMIT

- Isotherm Study = Identifies which type of GAC is best for a given application by determining the absolute adsorptive capacity
- Rapid Small-Scale Column Testing (RSSCT) = Predicts the adsorption of target compounds and breakthrough time for the media (and ultimately, operating cost)
- Both tests often require water specific method planning and have various ways of being run



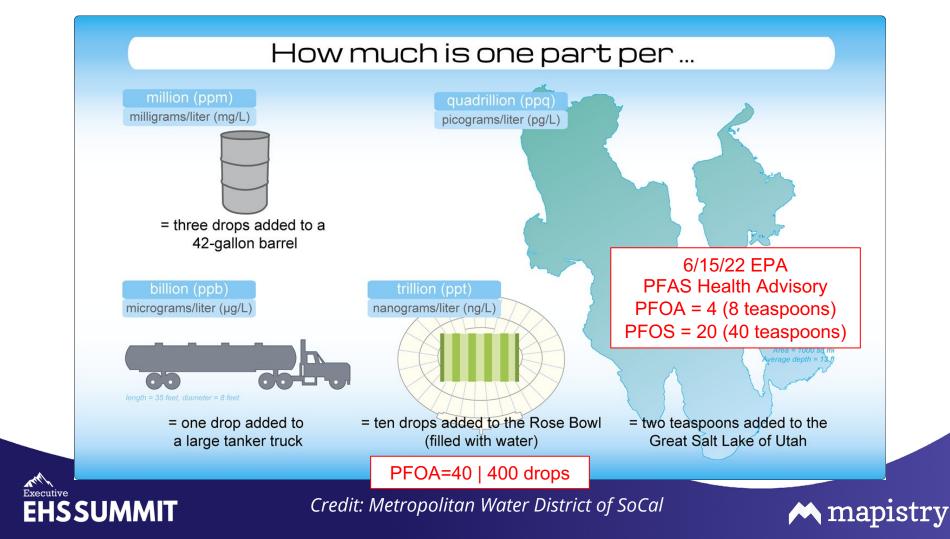
IX Modeling

- Requires additional analysis of related anions/cations and other compounds
- Often proprietary and vendor/media specific
- Model reliability is generally high if enough background data
- RSSCT can be done here too



RO Modeling

elect Water Analysis	Brackish Surfacewater (Conventional -				Parameters	
Select Water Type	User Defined		•		Total Alkalinity (ppm CaCO3) 754.00	
lon	mg/l	meq/l	ppm as CaCO3	TDS (mg/l)	1594.28	
Calcium (Ca)	183.00	9,1322	457.01	pH	12.09	
Magnesium (Mg)	0.18	0.0148	0.74	Temperature (F)	70.00	
Sodium (Na)	513.94	22.3551	1118.73			
Potassium (K)	5.00	0.1279	6.40	SDI	4.00	
Ammonia - N (NH4)	5.00	0.0008	0.04	Recovery (%)	70	
Barlum (Ba)	0.20	0.0029	0.14	Recovery (30)	1.0	
Strontium (Sr)	0.10	0.0023	0.11			
Iron (Fe)	0.50	0.0179	0.90	Saturation Data (Fee	d Water)	
Manganese (Mn)	0.01	0.0004	0.02	BaSO4	1430.08 %	
Total Cations	707.93	31.6542	1584.09			
Sulfate (SO4)	400.00	8.3278	416.75	CaF2	0.15 %	
Chloride (Cl)	300.00	8.4619	423.46	CaSO4	13.32 %	
Fluoride (F)	0.10	0.0053	0.26	SIO2	0.06 %	
Nitrate (NO3)	1.00	0.0161	0.81		0.44 %	
Bromide (Br)	0.00	0.0000	0.00	SrSO4		
Phosphate (PO4)	5.00	0.1303	6.52	Struvite	0.006 %	
Boron (B)	0.00	0.0000	0.00	LSI	4.71	
Silica (SiO2)	30.00	0.8362	41.85	Stiff-Davis Index	2.65	
Hydrogen Sulfide (H2S)	0.00	0.0000	0.00			
Bicarbonate (HCO3)	2.02	0.0330	1.65	Osmotic Pressure	16.87 psi	
Carbon Dioxide (CO2)	0.00	0.0000	0.00	Conductivity at 25C	4183µS/cm	
Carbonate (CO3)	148.23	4.9402	247.22		999.1 kg/m3	
Total Anions	886.34	31.6542	1584.09	Density	999.1 Kg/m3	

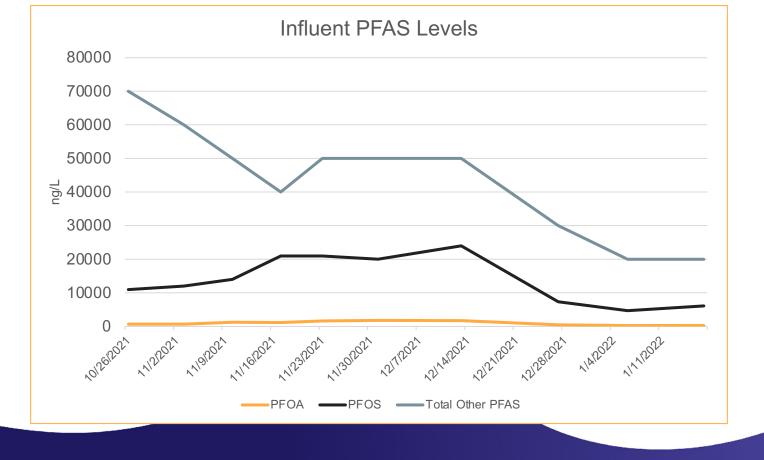


Units Primer

- mg/L = milligrams per liter = PPM = parts per millions
- $\mu g/L$ = micrograms per liter = PPB = parts per billion
- ng/L = nanograms per liter = PPT = parts per trillion
- pg/L = picograms per liter = PPQ = parts per quadrillion

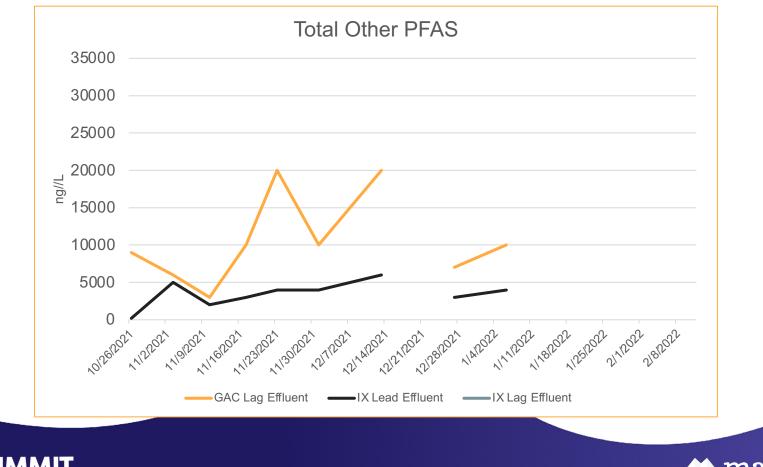
PFAS Case Study

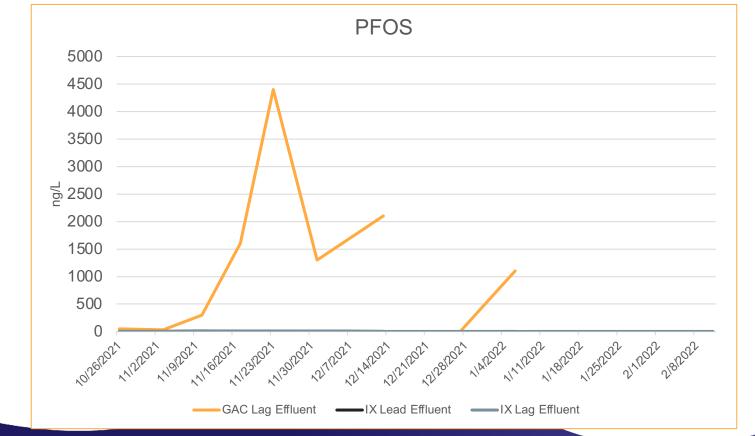
- Multi-stage treatment system to address PFAS contamination from firefighting activity that took place on site
- 100gpm treatment system includes ultrafiltration, carbon filtration, and ion exchange
- Treated approx. 8M gal to date

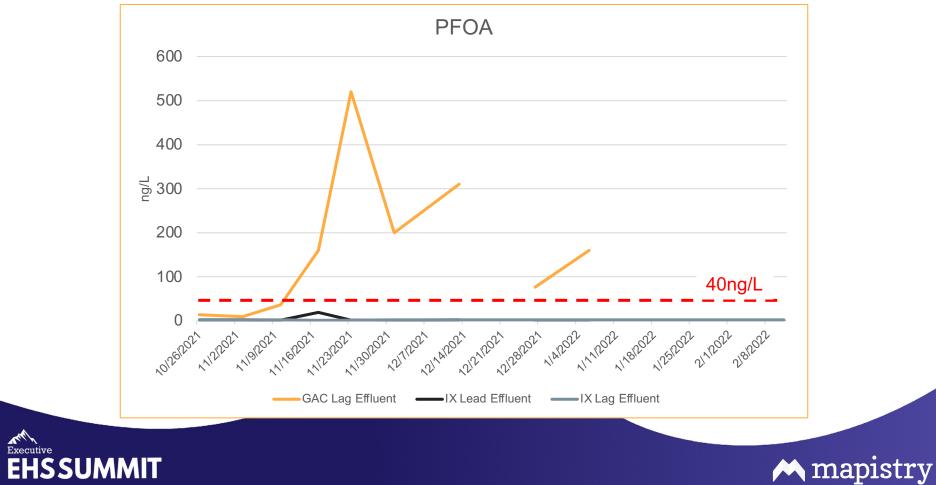


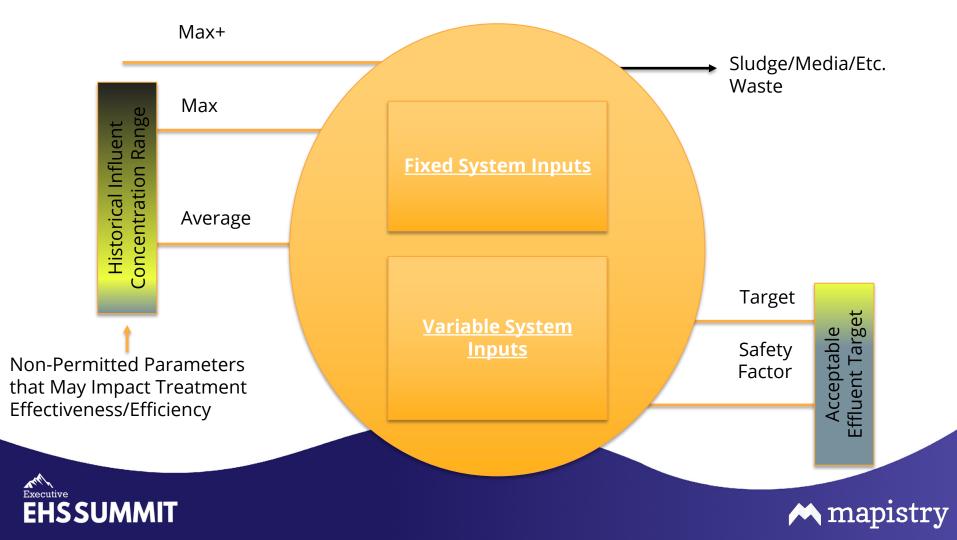
PFAS Case Study

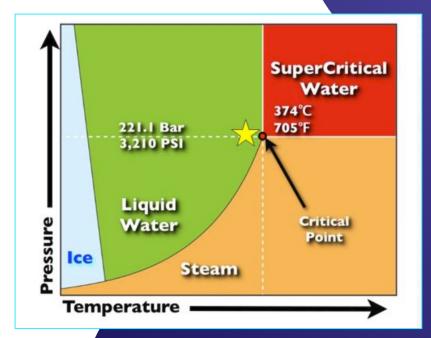
- WaterTectonics wrote ATS plan (treatment system operating plan) and provides all operating labor through its field service division
- System has met effluent PFAS targets since install and is in year three of operations
- Due to results, system is being tripled in size to accommodate more flows






EHSSUMMIT





PFAS Destruction

- Thermal (<u>Incineration</u>, Smoldering, Electrical Resistance)
- Reduction/Oxidation (Activated Persulfate, <u>Electrochemical</u>, Photolysis, Zerovalent Iron)
- Other (Ball Milling, Sonolysis, Plasma, Electron Beam, Supercritical Water Oxidation, <u>Hydrothermal Alkaline</u> <u>Treatment</u>)
- And so on...

Current PFAS Research Areas

- How to degrade PFAS in brine & residuals
- Develop real-time PFAS sensors
- Develop electrode materials for PFAS treatment
- Develop new anoxic/anaerobic PFAS treatments

New (?) CECs

"Although there is no federal statutory or regulatory definition of CECs, the term generally refers to unregulated substances detected in the environment that may present a risk to human health, aquatic life, or the environment, and for which scientific understanding of potential risks is evolving."*

*Congressional Research Service R45998

<u>EPA has fact sheets for 12 CECs:</u> https://www.epa.gov/fedfac/emerging-contaminantsand-federal-facility-contaminants-concern

New to the world?

PFAS 6-PPD Quinone Microplastics At new New to levels? Tungsten me?

Thank you!

